Approximating Multi-criteria Max-TSP
نویسندگان
چکیده
The traveling salesman problem (TSP) is one of the most fundamental problems in combinatorial optimization. Given a graph, the goal is to find a Hamiltonian cycle of minimum or maximum weight. We consider finding Hamiltonian cycles of maximum weight (Max-TSP). An instance of Max-TSP is a complete graph G = (V,E) with edge weights w : E → N. The goal is to find a Hamiltonian cycle of maximum weight. The weight of a Hamiltonian cycle (or, more general, of a subset of E) is the sum of the weights of its edges. If G is undirected, we speak of Max-STSP (symmetric TSP). If G is directed, we have Max-ATSP (asymmetric TSP). Both Max-STSP and Max-ATSP are NP-hard and APX-hard. Thus, we are in need of approximation algorithms. The currently best approximation algorithms for Max-STSP and Max-ATSP achieve approximation ratios of 61/81 and 2/3, respectively [2, 5]. Cycle covers are an important tool for designing approximation algorithms for the TSP. A cycle cover of a graph is a set of vertex-disjoint cycles such that every vertex is part of exactly one cycle. Hamiltonian cycles are special cases of cycle covers that consist of just one cycle. Thus, the weight of a maximum-weight cycle cover is an upper bound for the weight of a maximum-weight Hamiltonian cycle. In contrast to Hamiltonian cycles, cycle covers of minimum or maximum weight can be computed efficiently using matching algorithms [1].
منابع مشابه
A On Approximating Multi-Criteria TSP
We present approximation algorithms for almost all variants of the multi-criteria traveling salesman problem (TSP). First, we devise randomized approximation algorithms for multi-criteria maximum traveling salesman problems (Max-TSP). For multi-criteria Max-STSP, where the edge weights have to be symmetric, we devise an algorithm with an approximation ratio of 2/3 − ε. For multi-criteria Max-AT...
متن کاملMulti-Criteria TSP: Min and Max Combined
We present randomized approximation algorithms for multicriteria traveling salesman problems (TSP), where some objective functions should be minimized while others should be maximized. For the symmetric multi-criteria TSP (STSP), we present an algorithm that computes (2/3−ε, 4+ε) approximate Pareto curves. Here, the first parameter is the approximation ratio for the objectives that should be ma...
متن کاملDeterministic algorithms for multi-criteria Max-TSP
We present deterministic approximation algorithms for the multi-criteria maximum traveling salesman problem (Max-TSP). Our algorithms are faster and simpler than the existing randomized algorithms. We devise algorithms for the symmetric and asymmetric multi-criteria Max-TSP that achieve ratios of 1/2k−ε and 1/(4k−2)−ε, respectively, where k is the number of objective functions. For two objectiv...
متن کاملDeterministic Algorithms for Multi-criteria TSP
We present deterministic approximation algorithms for the multi-criteria traveling salesman problem (TSP). Our algorithms are faster and simpler than the existing randomized algorithms. First, we devise algorithms for the symmetric and asymmetric multicriteria Max-TSP that achieve ratios of 1/2k − ε and 1/(4k − 2) − ε, respectively, where k is the number of objective functions. For two objectiv...
متن کاملConnecting the Complexities of Approximating Clique and TSP
This paper demonstrates a connection between the complexity of finding approximate solutions to the MaxClique problem and that of the Traveling Salesman Problem (TSP). The main result of the paper is: MaxClique≤m 2-approximating MaxClique =⇒ TSP≤m 2-approximating TSP, where ≤m denotes many-one reductions between functions. Previously, it was known that TSP ≤m -reduces to (1+n− )-approximating T...
متن کامل